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In this paper, a robust approximation-based model predictive control (RAMPC) scheme for the con-
strained networked control systems (NCSs) subject to external disturbances is proposed. At each sam-
pling instant, the approximate discrete-time model (DTM) is utilized for solving the optimal control
problem online, and the control input applied to continuous-time systems can then be determined.
Such RAMPC scheme enables to implement MPC for the continuous-time systems in the digital environ-
ment, and meanwhile, achieves the state and control input constraints satisfaction in continuous-time
sense. Furthermore, we also provide a guideline to determine the allowable sampling period. Sufficient
conditions for the feasibility of the RAMPC scheme as well as the associated stability are developed.
Finally, the effectiveness of the RAMPC scheme is shown through a numerical simulation.
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1. Introduction

Networked control systems (NCSs) have received increasing atten-
tion in recent years, due to their potential applications in transporta-
tion systems, cloud control systems, power grids, etc. Comparing with
traditional point-to-point architecture, NCSs have many nice features
which include but are not limited to simpler maintenance and instal-
lation and lager flexibility [1,2]. Due to continuous-time system mod-
eling and practical physical plant as well as the sampling behaviour in
NCSs, there exist both continuous-time and discrete-time signals in
NCSs, and thus forming the so-called sampled-data NCSs. However,
this hybrid nature of the sampled-data NCSs brings challenges in
designing an effective control scheme and analyzing the close-loop
system stability and performance, especially for constrained nonlinear
systems, see [3–5]. Fortunately, a powerful way to tackle constrained
nonlinear system is model predictive control (MPC), which solves a
finite horizon optimal control problem (FHOCP) online meanwhile
taking the constraints into consideration. Consequently, many investi-
gations on MPC for nonlinear NCSs have been reported, the associated
works can be seen in [6–12] and the reference therein.

In general, MPC for sampled-data NCSs can be studied under
two framework, i.e., the continuous-time framework [6–8] and
the discrete-time framework [9–11]. On the one hand, the
continuous-time framework is focused as the actual plants are usu-
ally modeled by using continuous-time ODEs subjected to
continuous-time constraints. In continuous-time framework, these
constraints in the FHOCP are considered in a continuous-time set-
ting, and thus can be naturally satisfied in continuous-time sense.
However, two non-negligible problems arise in continuous-time
framework: (i) the continuous-time nonlinear ODEs are regarded
as one constraint in the FHOCP, thus the computation procedure
of the MPC is always supposed to be continuously repeated over
a vanishingly small sampling time, which is computationally
intractable, and (ii) stability of the continuous-time systems may
no longer be maintained after applying the sample-and-hold con-
trol signal, see [13]. On the other hand, the discrete-time frame-
work is widely discussed because MPC algorithms in this
framework can be easily implemented in the digital platform and
also have computational advantage [14,15]. Nonetheless, there still
exist some problems in discrete-time framework as follows: (i) the
state constraints are considered only at each sampling instant, thus
the inter-sampling behaviour, i.e., the state evolutions between two
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consecutive sampling instants, is neglected, leading to continuous-
time state constraints unsatisfaction; (ii) the required exact discrete-
time model (DTM) in solving the FHOCPmay not be available for gen-
eral nonlinear system; (iii) the stability for the exact DTM can be guar-
anteed, but the original continuous-time system can notdue to the
neglect of the inter-sampling behaviour.

Some preliminary results focusing on the above problems that
occurred in discrete-time and continuous-time frameworks are
reported in [16–19]. In [17], the sampled-data MPC for linear sys-
tems is studied. Since linear system is considered, whose exact dis-
cretized model is easily obtained and the inter-sample behavior
can be explicitly analyzed, the computation challenge of the MPC
is overcome under the discrete-time framework and the constraint
satisfaction is achieved in continuous-time sense by employing the
polytopic overapproximations technique. However, such technique
does not work for nonlinear systems as the discretization of gen-
eral nonlinear systems is generally intractable. To overcome this
drawback, receding horizon control scheme for continuous-time
nonlinear systems via their approximations is studied in [19],
where the approximate DTM of nonlinear system is introduced
to replace its exact DTM. But in these works, the state constraints
that can be encountered in many practical control systems, have
not been considered. Further studies can be found in [16,18],
where state constraints are considered only at the sampling
instants, but the inter-sampling behavior is neglected, thus the
state constraints may be violated in the continuous-time sense.
Additionally, none of these preliminary results study model error
between the obtained approximate DTM and the original
continuous-time system. Indeed, the combined effect of the model
error and the disturbances will deteriorate the control perfor-
mance, the worst case may cause infeasibility and instability.

With the above motivations, we investigate MPC for
continuous-time perturbed nonlinear systems, considering two
problems: (i) how to implement MPC for continuous-time systems
under the digital environment without transgressing the
continuous-time constraints? (ii) how to establish the stability of
the original system? These two problems are quite essential for
the implementation of MPC algorithms for sampled-data NCSs,
and we thus develop a novel RAMPC scheme to solve them. The
main contributions of our work are twofold:

� A novel constraint tightening approach for the formulation of
the FHOCP is proposed. This approach integrates the external
disturbance and the model error between the approximate
DTM and continuous-time systems, and consequently, a tight-
ened set is defined to achieve continuous-time state constraints
satisfaction. Compared with the existing work where the state
constraints are either not considered or considered only at the
sampling instants, the robust constraint satisfaction in
continuous-time sense achieved in this work has more theoret-
ical and practical significance.

� A new condition for guaranteeing feasibility and stability is estab-
lished. By incorporating the upper bound of the model error and
disturbance, this condition provides a guideline to determine the
allowable sampling period when the disturbance is known or
determine the maximum allowable disturbance bound when the
sampling period is selected. Moreover, it is worth noting that we
prove that the resultant closed-loop system is input-to-state prac-
tically stable (ISpS) under this new conditions.

The remainder of the paper is shown in five sections. Section 2
describes the research problem. The main results are shown in Sec-
tion 3, including the specific RAMPC scheme, recursive feasibility
as well as the associated stability. The effectiveness is verified by
a numerical example in Section 4. Section 5 concludes this work.
Notations. Let R and Z0 represent the real and nonnegative
integers, respectively. Rn denotes the n-dimensional Euclidean
space. kmin Rð Þ is the minimum eigenvalues of the matrix R. A matrix
P is called positive definite when P > 0. For a vector x, its Euclidean
norm is denoted by kxk :¼

ffiffiffiffiffiffiffi
xTx

p
and the P-weighted norm is

denoted by kxkP :¼
ffiffiffiffiffiffiffiffiffiffi
xTPx

p
.w t1 ;t2½ � is a signal from t1 to t2 and its sub-

script can be omitted for simplify when it can be derived from context.
For two sets A;B#Rn;A� B :¼ x : xþ y 2 A;8y 2 Bf g denotes the
Pontryagin difference set, A� B :¼ xþ y : x 2 A; y 2 Bf g denotes the
Minkowski addition set. K denotes a class-K;K1 is a class-K1 and
KL is a class-KL functions, see [20] for details.

2. Problem formulation

Consider the following uncertain nonlinear control system

_x tð Þ ¼ f x tð Þ;u tð Þð Þ þw tð Þ; t P 0 ð1Þ
where the system state x tð Þ 2 X � Rn and control input u tð Þ 2 U � Rm.
The vector w tð Þ 2 W ¼ w tð Þ 2 Rn : kwkR 6 n

� �
#Rn is the external

disturbance with a positive definite matrix R. These two compact sets
X and U represent the continuous-time state and control input con-
straints sets that contain the origin. Let the solution of system (1) for
time t with the control input u, disturbance w and initial value
x 0ð Þ ¼ x0 be denoted by u t; x0;u;wð Þ. Moreover, the function f with
f 0;0ð Þ ¼ 0 should satisfy the following assumption.

Assumption 1. f is local Lipschitz continuous with a constant
Lf > 0 depending on the weighted matrix R, i.e.
kf x;uð Þ � f y;uð ÞkR 6 Lf kx� ykR , 8x; y 2 X and u 2 U .

In the implementation of MPC for sampled-data NCSs, the state
x kTð Þ is sampled at each sampling instant kT and is transmitted to
MPC over a communication network, the FHOCP is solved by
exploiting this initial value x kTð Þ to obtain the control input
sequence. Then, the actual control, sent to the actuator with a
zero-order holder over time interval kT; kT þ T½ Þ, is the first ele-
ment in the above resultant control sequence. Finally, starting from
the time instant kþ 1ð ÞT , the FHOCP enters the next sampling and
computation cycle.

Since the DTM is necessary in computation of the FHOCP under
digital environment, the original continuous-time model should be
discretized. We first introduce some concepts about DTM of sys-
tem (1). Given a sampling period T, then the exact DTM of system
(1) with the sample-and-hold control input u tð Þ ¼ u kTð Þ, if
t 2 kT; kT þ T½ Þ is written as

xkþ1 ¼ xk þ
R kTþT
kT f x sð Þ;ukð Þ þw sð Þð Þds

¼: Fe
T xk;ukð Þ þwT;k

ð2Þ

where the simplified notions xk and uk are defined by xk :¼ x kTð Þ
and uk :¼ u kTð Þ; k 2 Z0, respectively, the subscript T means that Fe

T

is parameterized with T, and wT;k :¼
R kTþT
kT w sð Þds satisfying

wT;k 2 W :¼ wT : kwTkR 6 nT
� �

.
With the exact DTM (2), the corresponding FHOCP under

discrete-time framework is defined as follows:

min
ûk

J xk; ûk;Nð Þ

s:t: x̂kþiþ1jk ¼ Fe
T x̂kþijk; ûkþijk
� �

;

x̂kþijk 2 X ;

ûkþijk 2 U;
x̂kþNjk 2 X f ;

ð3Þ
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where N is the prediction horizon, i ¼ 0; . . . ;N � 1; x̂kþijk denotes the
kþ ið Þth predicted state based on the Fe

T and control sequence ûk

with initial state x̂kjk ¼ xk, the terminal state constraint set is X f ,
the cost function J xk; ûk;Nð Þ is formulated as

J xk; ûk;Nð Þ ¼
XN�1

i¼0

l x̂kþijk; ûkþijk
� �þ g x̂kþNjk

� � ð4Þ

with l : Rn � Rm ! Rþ and g : Rn ! Rþ being the stage cost function
and the terminal cost, respectively.

Solving the FHOCP based on (3) and (4), an optimal control

sequence û0
k;kþN�1jk½ � ¼ û0

kjk; û
0
kþ1jk; . . . ; û

0
kþN�1jk

n o
is obtained, then

the actual control input that is applied to continuous-time system
(1) is formulated as

u tð Þ ¼ jMPC xkð Þ; t 2 kT; kT þ T½ Þ ð5Þ
where jMPC xkð Þ :¼ û0 kjkð Þ called sample-and-hold signal, represent-
ing the MPC feedback control law, is the first element of û0

k;kþN�1jk½ �.
Although the above formulation gives a way to obtain a control

sequence, some problems still exist and need further treatments:

(a) The exact DTM is general unavailable as solving the differen-
tial Eq. (1) with nonlinear term f x;uð Þ is quite difficult;

(b) The obtained control sequence by solving FHOCP (3) only
guarantees the constraint satisfaction at the sampling
instant. But when considering the inter-sampling behavior,
the state constraints in continuous-time may be trans-
gressed, i.e., x tð Þ R X for all t 2 kT; kT þ Tð Þ.

(c) The MPC scheme guarantees that the exact DTM (2) is stable
in some sense, but the stability of the continuous-time (1)
with control signal (5) cannot be guaranteed.

Therefore, our objective is to design a scheme such that the
above three problems are solved. To be specific, the control input
obtained by solving a proper designed FHOCP can stabilize the
original continuous-time system (1) without resorting to the exact
DTM (2) and violating state and control input constraints satisfac-
tion in continuous-time.

Before proceeding, we introduce a necessary definition.

Definition 1 [21]. A set U is called robust positively invariant set
for a uncertain system xkþ1 ¼ F xk;wT;k

� �
if for all xk 2 U, then

F xk;wT;k
� � 2 U for all wT;k 2 W.
3. Main results

In this section, the RAMPC scheme is proposed, the recursive
feasibility is analyzed and the associated stability results are
established.

3.1. RAMPC scheme

In this part, we formulate the FHOCP of the RAMPC algorithm,
where the DTM, the state constraints, and the cost function are
elaborated in the following.

Since the exact DTM Fe
T of system (1) is usually unavailable, we

consider its approximate DTM instead. Let the sampling period T
be given, the disturbance-free approximate DTM of system (1) is
denoted by

xkþ1 ¼ Fa
T xk;ukð Þ ð6Þ
where the explicit expression of Fa
T depends on the adopted numer-

ical methods, which include, but are not limited to, the Euler
method and the modified Euler method. Taking the Euler approxi-

mation for example, we have Fa
T xk; ukð Þ ¼ FEuler

T xk;ukð Þ
:¼ xk þ Tf xk;ukð Þ.

Furthermore, Fa
T should satisfy the following assumptions.

Assumption 2. Given any sampling periods T > 0; FaT is continuous
in u, the following two inequalities

kFa
T x1;uð Þ � Fa

T x2;uð ÞkR 6 eLf Tkx1 � x2kR ð7Þ
kFe

T x1;uð Þ � Fa
T x1;uð ÞkR 6 T. Tð Þ ð8Þ

hold with a K1 function . for all x1; x2 2 X and u 2 U.
Remark 1. The above assumption is very general. Inequality (7)
implies that Fa

T satisfies a local Lipschitz condition. In fact, if the

Euler approximation method is adopted, i.e., Fa
T ¼ FEuler

T , then based
on Assumption 1, it can be easily observed that
kFa

T x;uð Þ � Fa
T y;uð ÞkR 6 1þ Lf T

� �kx� ykR and 1þ Lf T 6 eLf T . As for
the other approximate models, the corresponding analysis can be
seen in [22]. Inequality (8) imposes a restriction on the approxima-
tion models by restricting the one step modeling error between Fa

T

and Fe
T over the time interval kT; kT þ T½ �. It is necessary to point

out that this inequality can be checked even though we do not
know the exact DTM Fe

T , and more details can be found in [20,23].

To guarantee that state constraints are satisfied, the constraint
tightening scheme is proposed. The principle of the tightening
scheme is using the tightened state constraint set based on the
upper bound of the state error between the original system (1)
and the disturbance-free approximate DTM Fa

T .

Lemma 1. Suppose that Assumptions 1 and 2 hold. Define
t1 ¼ kþ ið ÞT þ s; i ¼ 0; . . . ;N � 1 with s 2 0; T½ Þ, then the state error
e kþið ÞT;t1½ � :¼ u t1; xkþi;u kþið ÞT;t1½ �;w kþið ÞT;t1½ �

� �� x̂kþijk is bounded by

ke kþið ÞT;t1½ �kR 6 lsþ eiLf T � 1
eLf T � 1

T. Tð Þ þ nTð Þ ð9Þ

for all xkþi 2 X ;u kþið ÞT;t1½ � 2 U and w kþið ÞT;t1½ � 2 W, where l is a constant
that makes system function in (1) bounded from above, i.e.,
kf x tð Þ;u tð Þð Þ þw tð ÞkR 6 l;8x tð Þ 2 X ;u tð Þ 2 U , and w tð Þ 2 W.
Proof. Note that the constant l always exists since the domain
X � U is bounded and the external disturbance W is a compact
set. For better reading, the validity of this lemma is divided into
three steps.

1. First, let the state error between the exact DTM (2) and the
approximate DTM (6) be defined as ekþi ¼ xkþi � x̂kþijk. By virtue
of the definition of Fe

T ; F
a
T and inequality (8), it comes that
kFe
T xk;ukð Þ þwT;k � Fa

T xk;ukð ÞkR 6 T. Tð Þ þ nT

According to the Lipschitz property of f and Fa
T in Assumptions 1

and 2 and the triangle inequality, it is easy to obtain

jekþ1kR 6 kFe
T xk;ukð Þ þwT;k � Fa

T xkjk;uk

� �kR
þkFa

T xkjk;uk

� �� Fa
T x̂kjk;uk

� �kR
¼ T. Tð Þ þ nT þ eLf Tkxk � x̂kjkkR
¼ T. Tð Þ þ nT
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where the initial condition x̂kjk ¼ xk and the fact ûkjk ¼ uk are uti-
lized in these inequalities above. Then, it follows by induction
that

kekþ2kR 6 T. Tð Þ þ nT þ eLf Tkxkþ1 � x̂kþ1jkkR
6 T. Tð Þ þ nT þ eLf T T. Tð Þ þ nTð Þ
..
.

kekþikR 6
Xi�1

j¼0

ejLf T T. Tð Þ þ nTð Þ

¼ e
iLf T�1
e
Lf T�1

T. Tð Þ þ nTð Þ

ð10Þ

2. Secondly, we explain that the trajectory of the real system does
not deviate far away from the approximate DTM over time
interval kþ ið ÞT; t1½ �. Since kf x tð Þ;u tð Þð Þ þw tð ÞkR 6 l holds and
the solution of system (1) exists, it is easy to derive that
ku t1; xkþi;u kþið ÞT;t1½ �;w kþið ÞT;t1½ �

� �� xkþikR 6 ls.
3. Finally, incorporating the above two steps, we obtain
Fig. 1. The framework of the RAMPC scheme.
ke kþið ÞT;t1½ �kR 6 ku t1; xkþi;u kþið ÞT;t1½ �;w kþið ÞT;t1½ �
� �� xkþikR þ kekþikR

6 lsþ e
iLf T�1
e
Lf T�1

T. Tð Þ þ nTð Þ

These complete the proof. h

Based on Lemma 1, the tightened set is defined by the Pon-
tryagin difference set

X i ¼ X � Bi ð11Þ

where the set Bi is defined as

Bi :¼ x 2 Rn : kxkR 6 lsþ eiLf T � 1
eLf T � 1

T. Tð Þ þ nTð Þ
� �

:

One can note that if the predicted state satisfies the pointwise con-
straint x̂kþijk 2 X i, then the actual continuous-time system state con-
straints are satisfied, i.e., u t1; xkþi;u;wð Þ 2 X . This claim is a direct
result of the definition of the Pontryagin difference set and inequal-
ity (9). By this approach, the problem of the constraint satisfaction
in continuous-time sense (the problem (b) in previous section) is
solved.

With the above preliminaries, the FHOCP of the RAMPC scheme
is formulated as follows. Given a sampling period T, the cost func-
tion related to T is defined by

JT xk; ûk;Nð Þ ¼
XN�1

i¼0

Tl x̂kþijk; ûkþijk
� �þ g x̂kþNjk

� � ð12Þ

where l x; uð Þ ¼ kxk2Q þ kuk2P is the stage cost and g xð Þ ¼ kxk2R is the
terminal cost with Q ; P;R being positive definite matrices. The con-
trol sequence û0

k;kþN�1jk½ � and the corresponding predictive state

sequence x̂0
k;kþNjk½ � are obtained by solving the FHOCP that is defined

below

min
ûk

JT xk; ûk;Nð Þ

s:t: x̂kþiþ1jk ¼ Fa
T x̂kþijk; ûkþijk
� �

;
ð13aÞ

x̂kþijk 2 X i; ð13bÞ
ûkþijk 2 U; i ¼ 0; . . . ;N � 1 ð13cÞ
x̂kþNjk 2 X f ; ð13dÞ

with x̂kjk ¼ xk being the initial condition of solving the FHOCP and

X f ¼ x̂ : kx̂k2R 6 r2
T

n o
being the terminal state constraint set.
Remark 2. One may note that the upper bound of the state error in
Lemma 1 may be over-conservative since the repeatedly use of the
constant Lf that may be very large. Fortunately, this problem can
be alleviated as we find a smaller Lf by changing another matrix-
weighted norm, see [24] for more details.
Remark 3. Recall the three problems proposed in Section 2. The
approximate DTM Fa

T is employed in (13a) to replace the exact
DTM Fe

T , which solves the problem (a). To solve the problem (b),
the tightened set in (13b) is proposed such that the state constraint
is satisfied in continuous-time sense. As for the stability problem
(c), since the cost function (4) that is independent on sampling per-
iod T may be unable to stabilize the exact DTM (2), typical exam-
ples can be found in [19,22], we employ a T-related cost function
(12) here. Together with an additional assumption (Assumption
4), the stability for the continuous-time system can be established,
which will be discussed in the next section. One may notice that
with the development of wireless communication technique like
5G, low latency and high reliability can be achieved. Therefore, it
is legitimate to not consider the delays and packet dropouts in this
work.

The overall control structure with the RAMPC scheme is illus-
trated in Fig.1. At each sampling instant kT, the sampled state
x kTð Þ is transmitted to MPC over a communication network, the
related FHOCP in (13) which takes x kTð Þ as the initial condition is
solved, and the control signal ûkjk selected from the obtained input
sequence û0

k;kþN�1jk½ � is sent to the actuator through a communica-
tion network again. The actuator provides the actual input
u tð Þ ¼ ûkjk over time interval kT; kT þ T½ Þ to original system (1) in
a sample-and-hold manner. The feasibility of this RAMPC scheme
as well as the associated stability of the resultant overall system
under some mild conditions are discussed in next section.

3.2. Recursive feasibility and stability

The feasibility of this RAMPC scheme as well as its associated
stability are established in this part. The feasibility means the solu-
tion of the FHOCP always exists at each sampling instant. To guar-
antee feasibility and stability, some fairly standard assumptions
are needed.

Assumption 3. The terminal state constraint set X f , the terminal
cost g xð Þ, the auxiliary control law h xð Þ, another important set N,
and the stage cost function l x;uð Þ satisfy the following properties,

1. 0 2 X f ;X f � N ¼ x̂ : kx̂k2R 6 ~r2
T

n o
with 0 < rT < ~rT and

N# x 2 XN�1 : h xð Þ 2 Uf g;
2. Fa

T x;h xð Þð Þ 2 X f ;8x 2 N;
3. g Fa

T x;h xð Þð Þ� �� g xð Þ 6 �Tl x;h xð Þð Þ;8x 2 N;
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4. g xð Þ is Lipschitz continuous in Nwith constant Lg > 0 relying on
weighted matrix R, i.e., jg xð Þ � g yð Þj 6 Lgkx� ykR;8x; y 2 N;

5. g xð Þ is bounded, specifically, ~a1 kxkð Þ 6 g xð Þ 6 ~a2 kxkð Þ with
~a1; ~a2 2 K1;8x 2 N;

6. l x;uð Þ is Lipschitz continuous with Ll P 0 depending on
weighted matrix R, i.e., the inequality
jl x;uð Þ � l y;uð Þj 6 Llkx� ykR holds 8x; y 2 X ;u 2 U;

7. l x;uð Þ P ~a3 kxkð Þ with ~a3 2 K1;8x 2 X ;u 2 U.
Assumption 4. ([18]) f x;uð Þ in (1) is bounded from above, i.e., the
following inequality hold with .1 2 K1

kf x;uð Þk 6 max h;.1 1=hð Þl x;uð Þ� � ð14Þ
for all h > 0; x 2 X and u 2 U.
Remark 4. The Properties 1–7 in Assumption 3 provides some
rules in designing the matrices P;Q ;R, the set N and the auxiliary
controller h xð Þ, which are fairly standard in the field of MPC, see,
e.g., [24,14]. It should be noted that the parameters rT and ~rT

are both dependent on the sampling period T, which is a immedi-
ate result of the Properties 2–3. Assumption 4 can be easily satis-
fied for very general continuous function f x;uð Þ, see [18,
Section 4.3] for more details.

First of all, the following theorem formulates the upper bound
of the model error and disturbance to guarantee that the FHOCP
is recursively feasible.

Theorem 1. Given the states set XMPC and suppose that the FHOCP in
(13) has a solution for any x0 2 XMPC, if the system (1) fulfills
Assumption 1–3, the model error and disturbance satisfy

nT þ T. Tð Þ 6 ~rT � rT

e N�1ð ÞLf T ð15Þ

then XMPC is robust positively invariant for the exact DTM (2).
Proof. To prove this claim, one only needs to prove that if
xk 2 XMPC , then xkþ1 2 XMPC .

The proof of the robust invariance of XMPC can be completed by
induction. Assume that the FHOCP has a the optimal solution
û0

k;kþN�1jk½ � at kT, then based on which a solution of the FHOCP at

time kþ 1ð ÞT can be constructed as follows, and we only need to
verify its feasibility.

ûkþ1þijkþ1 ¼ û0
kþ1þijk i ¼ 0; . . . ;N � 2

h x̂kþNjkþ1
� �

i ¼ N � 1

(
ð16Þ

For clarity of exposition, the proof is divided into three steps.
� x̂kþ1þNjkþ1 2 X f : Applying the control input

ûkþ1þijkþ1 ¼ û0
kþ1þijk to the approximate DTM, then the state

error in the following is bounded by
Fig. 2. The value of the function G Tð Þ ¼ ~rT�rT

e
N�1ð ÞLf T � T. Tð Þ � nT.
kx̂kþ1þijkþ1 � x̂0kþ1þijkkR
¼ kFa

T x̂kþijkþ1; û0
kþijk

	 

� Fa

T x̂0kþijk; û
0
kþijk

	 

kR

6 eLf Tkx̂kþijkþ1 � x̂0kþijkkR
. . .

6 eiLf Tkx̂kþ1jkþ1 � x̂0kþ1jkkR

ð17Þ

where the inequality (7) in Assumption 2 is used. Noticing that
x̂kþ1jkþ1 ¼ xkþ1, thus from (10), we have
xkþ1 � x̂0kþ1jk ¼ T. Tð Þ þ nT. Substituting it into (17) yields
kx̂kþ1þijkþ1 � x̂0kþ1þijkkR 6 eiLf T T. Tð Þ þ nT½ � ð18Þ

Since nT þ T. Tð Þ 6 ~rT�rT

e
N�1ð ÞLf T . Thus, we have

kx̂kþNjkþ1kR 6 kx̂0kþNjkkR þ ~rT � rT

Noting that x̂0kþNjk 2 X f , i.e., kx̂0kþNjkkR 6 rT , we have

kx̂kþNjkþ1kR 6 ~rT ð19Þ
which means x̂kþNjkþ1 2 N. Finally, utilizing the auxiliary con-
troller h x̂kþNjkþ1

� �
and considering the Property 2 in Assumption

3, one has x̂kþ1þNjkþ1 2 X f .
� x̂kþ1þijkþ1 2 X i: First, for i ¼ 0; . . . ;N � 2, considering the for-

mulation in (18), we obtain

kx̂kþ1þijkþikR 6 kx̂0kþ1þijkkR þ eiLf T T. Tð Þ þ nT½ �

Since x̂0kþ1þijk 2 X iþ1, we have

x̂kþ1þijkþ1 2 X iþ1 � eiLf T T. Tð Þ þ nT½ �
2 X i

Next, for i ¼ N � 1. From (19), we know that x̂kþNjkþ1 2 N. Consid-
ering the Property 1 in Assumption 3, one has
x̂kþNjkþ1 2 N#XN�1.
� ûkþ1þijkþ1 2 U: Based on equation (16), ûkþ1þijkþ1 ¼ û0

kþ1þijk 2 U
for i ¼ 0; . . . ;N � 2 due to the feasibility of û0

ijk. Then,

x̂kþNjkþ1 2 N as verified above, we have h x̂kþNjkþ1
� � 2 U by vir-

tue of the Property 3 in Assumption 3 and therefore,
ûkþNjkþ1 2 U.

Based on the above three claims, the constructed solution (16)
is feasible at time (k + 1) T, which implies that XMPC is a robust pos-
itively invariant set, and thus this proof is completed.

Remark 5.

1) Note that the robust positive invariance of XMPC implies
that the state xk at every sampling instant is in XMPC , which
also means that the solution of the FHOCP (13) always exists,
i.e., the RAMPC scheme is recursively feasible.
2) Inequality (15) provides a method to determine the sam-
pling period T once we know the upper bound of the exter-
nal disturbance in practice or to determine the maximum
allowable disturbance bound n when the sampling period
is selected. If we choose an approximate T	 to let
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nT	 þ T	. T	ð Þ ¼ ~rT	 �rT	

e
N�1ð ÞLf T	 hold, then the condition (15) always

holds for any T 2 0; T	ð �. This claim is verified by numerical
simulation in Section 4. Further, note that the maximum
allowable disturbance bound n cannot be infinite since the
right hand side of (15) is finite even if the sampling period
T is sufficiently small (as illustrated in Fig. 2).
Theorem 2. Suppose that the sampling period T is selected to satisfy (15)
and Assumptions 1–4 hold true. Then the exact DTM (2) under the RAMPC
algorithm is ISpS for all x0 2 XMPC, i.e., the following inequality holds

kxkk 6 �b kx0k; kTð Þ þ �c nð Þ þ �d ð20Þ
with two functions �b 2 KL; �c 2 K1 and a constant �d > 0 for all initial
condition x0 2 XMPC and disturbances wT;k 2 W.
Proof. See Appendix. h

The above theorem shows that the exact DTM (2) is stable
with the control input provided by the RAMPC algorithm. On
the other hand, Assumption 4 guarantees that the continuous-
time solution of the original system (1) between the two sam-
pling instants kT and kT þ T does not diverge far away from the
system state at the sampling instant kT. Incorporating these two
facts, the stability of the system (1) by applying control signal
(5) is established.

Theorem 3. Suppose that Assumptions 1–4 and inequality (15) are
satisfied, then the original system (1) with the sample-and-hold
control signal (5) is ISpS, i.e., there are b 2 KL , c 2 K1 and a
constant d > 0 such that

kx tð Þk 6 b kx0k; tð Þ þ c nð Þ þ d ð21Þ
holds for any initial condition x0 2 XMPC and w tð Þ 2 WMPC, where XMPC

and WMPC are allowable state set and disturbance set defined below.

Before proceeding, we introduce a lemma which bounds the
continuous-time solution between two sampling instants kT and
kT þ T by the state at the sampling instant kT.

Lemma 2. If Assumptions 1–4 and inequality (15) hold, then there
exist c1; c2 2 K1 such that the continuous-time solutions at time t
satisfy

ku t; x0;u;wð Þk 6 c1 kx0kð Þ þ c2 nð Þ ð22Þ

for all x0 2 XMPC ;w tð Þ 2 W and t 2 0; T½ �.
Proof. For t 2 0; T½ �, leveraging inequality (14) to continuous-time
solution yields

ku t; x0;u;wð Þ � x0k 6
R t
0 kf x sð Þ; u sð Þð Þ þw sð Þkds

6 nT
kmin Rð Þ þmax Th;.1 1=hð Þ R t

0 l x sð Þ;u sð Þð Þds
n o

Notice that the inequality l x tð Þ;u tð Þð Þ 6 ml x0;u0ð Þ always holds with
a constant m > 0 for t 2 0; T½ � due to X ;U are compact set and the
Property 6 in Assumption 3, we obtain

ku t; x0;u;wð Þ � x0k 6 nT
kmin Rð Þ þmax Th;m.1 1=hð ÞTl x0;u0ð Þ� �

From the definition of J0T x kð Þð Þ and inequality (25), one has

Tl x0;u0ð Þ 6 J0T x0ð Þ 6 a2 kx0kð Þ for all x0 2 XMPC . Thus, we have

ku t; x0;u;wð Þ � x0k 6 max Th;m.1 1=hð Þa2kx0k
� �þ nT

kmin Rð Þ
The remainder part is to construct two function c1 2 K1 and
c2 2 K1, which has the similar outline as the one in [18, Remark
4.13]. Specifically, h can be given by h ¼ ~c kx0kð Þ, where

~c rð Þ :¼ 1=.�1
1 1=

ffiffiffiffiffiffiffiffiffiffiffi
a2 rð Þp� �

if r > 0
0 if r ¼ 0

(

It is easily verified that ~c 2 K1. Hence, by letting

c1 rð Þ ¼ r þmax T~c rð Þ;m
ffiffiffiffiffiffiffiffiffiffiffi
a2 rð Þ

pn o
; c2 rð Þ ¼ Tr

kmin Rð Þ ;

one finally obtains

ku t; x0;u;wð Þk 6 c1 kx0kð Þ þ c2 nð Þ
which complete this proof. h

The proof of Theorem 3: On the basis of Theorem 2 and Lemma
2, the stability result can be established. Our objective is to find
b 2 KL; c 2 K and d > 0 to make the inequality (21) hold. The fol-
lowing process follows the same line of Theorem 5 in [25]. There-
fore, one only needs to pay attention to the set XMPC ;WMPC and
expressions of b :; :ð Þ; c :ð Þ and d. For simplicity, we directly give
these expressions as follows:

b s; sð Þ :¼ max c1 sð ÞeT�s;2nTmax
g2 0;s½ �

2�gc1 6�b 2c1 sð Þ; s� gð Þ� �� �
;

c sð Þ :¼ c1 6�b 2c2 sð Þ;0ð Þ� �þ c1 3�c sð Þð Þ þ c2 sð Þ;
d :¼ c1 3�d

� �
where n is a positive constant such that nT 2 Z0 and nT P 2. More-
over, the compact sets XMPC and WMPC are taken as

XMPC :¼ x 2 Rn : x ¼ min c�1
1

1�að Þ�x
2

	 

; c�1

1
�b�1 1�að Þ�x

2 ;0
	 
	 
n o

;8�x 2 XMPC
n o

WMPC :¼ n 2 Rn : n ¼ min c�1
2

a�x
2

� �
; �c�1 a�x

2

� �
; �n

� �
;8�x 2 XMPC ; �n 6 ~rT�rT

Te N�1ð ÞLf T � q Tð Þ
n o

where a is an arbitrary number 0 < a < 1.
These complete the proof.

4. Simulation example

Consider the following cart-damper-spring system discussed in
[26]

_x tð Þ ¼ v tð Þ
_v tð Þ ¼ � k0

Mc
e�x tð Þx tð Þ � h

Mc
v tð Þ þ u tð Þ

Mc
þw tð Þ;

(
ð23Þ

where x tð Þ is the cart displacement, v tð Þ denotes the velocity,
Mc ¼ 1:25 kg is the cart mass, the other parameters are given as
k0 ¼ 0:9 N/m, h ¼ 0:42 N.s/m. u tð Þ and w tð Þ are respectively, the
control input and the additive disturbance. Let z ¼ x;v½ � denote
the system states. The state and control constraints are set as
X ¼ z : �0:5 6 z tð Þ 6 0:5f g and U ¼ u : �0:5 6 u tð Þ 6 0:5f g. For
simplify, we here formulate the specific form of the disturbance-
free Euler approximation of the system (23).

xkþ1 ¼ xk þ Tvk

vkþ1 ¼ 1� Th
Mc

	 

vk � k0T

Mc
e�xk xk þ Tuk

Mc

(
ð24Þ

Note that the form of modified Euler approximation [27] and
fourth-order Runge–Kutta approximation [28] can be similarly
obtained.

Considering the MPC implementation of DTM (24), setting pre-
diction horizon N ¼ 5. The local Lipschitz constant is Lf ¼ 1:8440.
The two weighted matrices are set as Q ¼ 0:5 0;0 0:5½ � and
P ¼ 0:5. For Euler approximation, the upper bound of one step
modeling error between Fe

T and Fa
T can be obtained as

T. Tð Þ ¼ LflT2=2. To determine a proper sampling period T, the
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value of the function G Tð Þ ¼ ~rT�rT

e
N�1ð ÞLf T � T. Tð Þ � nT is depicted in Fig. 2

with external disturbance kw tð Þk 6 0:005. Then according to the
condition (15) in Theorem 1, the sampling period can be set as
T ¼ 0:08 sec to guarantee the feasibility. The weighted matrix R
then can be calculated as

R ¼ 1:5385 0:5068
0:5068 0:9369

� �
;

the terminal set X f ¼ z : kzk2R 6 0:31602
n o

and another important

set N ¼ z : kzk2R 6 0:32552
n o

can be determined by using the Jaco-

bian linearization methods in [15].
To examine this scheme, we use MATLAB subroutine fmincon

to solve the FHOCP. The initial value is x0 ¼ 0:3;�0:3½ �, the MPC
algorithms based on the Euler approximation, modified Euler
approximation and fourth-order Runge–Kutta approximation are
performed, respectively, and the results are illustrated in Figs. 3–
5. It is easy to observe that the continuous-time state and control
constraints are all satisfied, and the overall system is ISpS. It is
worth noting that the Runge–Kutta approximation is more accu-
rate but always has a more complex expression, which increases
Fig. 3. Displacements of the closed-loop systems with different approximations.

Fig. 4. Velocities of the closed-loop systems with different approximations.

Fig. 6. Comparison of displacements with different sampling periods.

Fig. 7. Comparison of velocities with different sampling periods.



Fig. 8. Comparison of control inputs with different sampling periods.
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difficulty in designing MPC algorithms. On the contrary, the Euler
approximation is low-accuracy, but it is simpler in design and
can obtain a comparable control performance under an appropriate
sampling period.

Additionally, the effect of sampling period on the FHOCP is
investigated by trying different sampling periods T for Euler
approximation system (24). The resulting Figs. 6–8 show that the
FHOCP is feasible under a small sampling period T. However, the
FHOCP does not have feasible solutions in simulation after contin-
uing to increase the sampling period, although the disturbance has
been neglected. One can also observed that the FHOCP is still fea-
sible even if the condition (15) is violated, this is because of the
conservativeness brought by the Lipschitz constants and the con-
straint tightening technique [24]. Therefore, how to reduce such
conservativeness is our future work.

5. Conclusion

The implementation of MPC for continuous-time systems in the
digital environment has been investigated in this paper. A RAMPC
scheme for NCSs has been proposed accordingly. With this scheme,
the FHOCP can be solved in discrete-time manner, which makes
the MPC algorithms computationally tractable. In addition, the
continuous-time state and control constraints satisfaction have
been achieved by a novel constraint tightening scheme. More
importantly, we have shown that the FHOCP is recursively feasi-
ble at each sampling instant and the original continuous-time
system is ISpS by applying the sample-and-hold control signal
under some mild assumptions. Our future work is to reduce the
conservativeness and the computational complexity of the
FHOCP by considering the event-triggered MPC [29] and adaptive
horizon MPC [14].
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Appendix A. Proof of Theorem 2

Proof. According to [30], we can choose a suitable ISpS-Lyapunov
function for the system (2) to prove that it is stable. We here take
the optimal value function as the ISpS-Lyapunov function candi-
date. Let J0T xkð Þ ¼ JT x0k ; û
0
k ;N

� �
be the optimal value function at the

sampling instant kT. The following derivation we will show that
the following

a1 kxkkð Þ 6 J0T xkð Þ 6 a2 kxkkð Þ
J0T xkþ1ð Þ � J0T xkð Þ 6 T �a3 kxkkð Þ þ ~c nð Þ þ d1½ �

hold with functions a1;a2;a3 2 K1 and ~c 2 K for all xk 2 XMPC ;

wT;k 2 W.
Suppose that Assumption 3 hold, according to [16, Section 2.4],

it is easy to obtain

J0T xkð Þ 6 g xkð Þ 6 ~a2 kxkkð Þ; 8xk 2 N

For the upper bound of J0T xkð Þ in XMPC , a feasible method in [31] is
utilized. Since the compactness of X ;U and the fact of Assumption

3, there exists an upper bound for J0T xkð Þ such that J0T xkð Þ 6 J


for all

xk 2 XMPC , where J



is finite. Define a set Br 2 Rn;Br ¼
x 2 Rn : kxk 6 rf g � X f . This set always exists since X f contains

the origin. Let � ¼ max 1; J



~a2 rð Þ

 �
and a2 kxkð Þ ¼ � � ~a2 kxkð Þ, we have

J0T xkð Þ 6 a2 kxkkð Þ; 8xk 2 XMPC ð25Þ
To get a lower bound for the optimal value function J0T xkð Þ, for any
xk 2 XMPC= 0f g, if the corresponding optimal state evolution is

denoted as x̂0kþiþ1jk ¼ Fa
T x̂0kþijk; û

0
kþijk

	 

, then we study two cases:

1) If kx̂0kþNjk � xkk 6 1
2 kxkk, which implies kx̂0kþNjkk P 1

2 kxkk,
according to the property 5 in Assumption 3, we have
J0T xkð Þ P g x̂0kþNjk
	 


P ~a1
1
2
kxkk

 �

2) If kx̂0kþNjk � xkk P 1
2 kx kð Þk, then

1
2 kxkk 6 kx̂0kþNjk � xkk

¼ k
XN�1

i¼0

x̂0kþ1þijk � x̂0kþijk

	 

k

6
XN�1

i¼0

kFa
T x̂0kþijk; û

0
kþijk

	 

� x̂0kþijkk

ð26Þ

where

kFa
T x;uð Þ � xk ¼ kFa

T x;uð Þ � FEuler
T x;uð Þ þ Tf x;uð Þk

6 1
kmin Rð Þ kFa

T x;uð Þ � FEuler
T x;uð ÞkR þ kTf x;uð Þk

ð27Þ
Let .2 2 K1 that make one step modeling error in (8) between

the exact DTM Fe
T and the Euler approximate DTM FEuler

T satisfy

kFe
T x;uð Þ � FEuler

T x;uð ÞkR 6 T.2 Tð Þ and ~. ¼ .þ .2, then

kFa
T x;uð Þ � FEuler

T x;uð ÞkR 6 T. Tð Þ þ T.2 Tð Þ
¼ T~. Tð Þ

ð28Þ

Substituting (27), (28) with x ¼ x̂0kþijk and u ¼ û0
kþijk into (26)

yields

1
2 kxkk 6

XN�1

i¼0

1
kmin Rð Þ T~. Tð Þ þ Tkf x̂0kþijk; û

0
kþijk

	 

k

	 


6
XN�1

i¼0

max Th;.1 1=hð ÞTl x̂0kþijk; û
0
kþijk

	 
n o
þ 1

kmin Rð Þ T~. Tð Þ
	 


6
XN�1

i¼0

hT þ .1 1=hð ÞTl x̂0kþijk; û
0
kþijk

	 

þ 1

kmin Rð Þ T~. Tð Þ
	 


6 1
kmin Rð ÞNT~. Tð Þ þ NhT þ .1 1=hð ÞJ0T xkð Þ
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where inequality (14) is used in the third inequality. By choosing

appropriate T	 to let NT	~. T	ð Þ
kmin Rð Þ þ NeT	 6 1

3 kxkk, thus J0T xkð Þ P
1

6.2 1=eð Þ kxkk. Let a1 xð Þ ¼ min ~a1
1
2 x
� �

; 1
6.2 1=eð Þ x

n o
, we have J0T xkð Þ P

a1 kxkkð Þ;8xk 2 XMPC= 0f g. Note that this inequality also holds
for xk ¼ 0, thus the lower bound is established, i.e.,

J0T xkð Þ P a1 kxkkð Þ; 8xk 2 XMPC ð29Þ
Finally, the difference of the MPC cost function
MJk ¼ J0T xkþ1ð Þ � J0T xkð Þ is calculated. For the sake of simplicity,
using x̂kþi to represent x̂kþ1þijkþ1; ûkþi to represent
ûkþ1þijkþ1; x̂0kþiþ1 to denote x̂0kþiþ1jk; û

0
kþiþ1 to denote û0

kþiþ1jk. Since
the feasible solution (16) which constructed in Theorem 1
may not optimal for the FHOCP at time kþ 1ð ÞT, and let
JT xkþ1ð Þ ¼ JT xkþ1; ûkþ1;Nð Þ, it follows

MJk 6 JT xkþ1ð Þ � J0T xkð Þ
¼ Tl x̂kþN�1; ûkþN�1ð Þ � Tl x̂0k ; û

0
k

� �
þ
XN�2

i¼0

Tl x̂kþi; ûkþið Þ � Tl x̂0kþ1þi; û
0
kþ1þi

� �� �
þg x̂kþNð Þ � g x̂0kþN

� �
Adding and removing the same terms, it comes that

MJk 6 �Tl x̂0k ; û
0
k

� �þXN�2

i¼0

Tl x̂kþi; ûkþið Þ � Tl x̂0kþ1þi; û
0
kþ1þi

� �� �
þTl x̂kþN�1; ûkþN�1ð Þ þ g x̂kþNð Þ � g x̂kþN�1ð Þ
þg x̂kþN�1ð Þ � g x̂0kþN

� �
ð30Þ

By virtue of inequality (18) and the Properties 4–7 in Assumption 3,
one has

l x̂0k ; û
0
k

� �
P ~a3 kx̂0kk

� � ¼: a3 kxkkð Þ ð31Þ
l x̂kþi; ûkþið Þ � l x̂0kþ1þi; û

0
kþ1þi

� �
6 LleiLf T T. Tð Þ þ nT½ � ð32Þ

and

g x̂kþN�1ð Þ � g x̂0kþN

� �
6 Lge N�1ð ÞLf T T. Tð Þ þ nT½ � ð33Þ

Since x̂kþN 2 N, according to Assumption 3 we have

g x̂kþNð Þ � g x̂kþN�1ð Þ 6 �Tl x̂kþN�1; ûkþN�1ð Þ ð34Þ
Substituting (31), (32), (33) and (34) into (30) yields

MJk 6 T �a3 kxkkð Þ þ ~c nð Þ þ d1½ � ð35Þ

with ~c nð Þ ¼ TLl e
N�1ð ÞLf T�1
e
Lf T�1

þ Lge N�1ð ÞLf T
h i

n and d1 ¼ TLl e
N�1ð ÞLf T�1
e
Lf T�1

þ
h

Lge N�1ð ÞLf T �. Tð Þ.
So far, we have shown that we can choose the optimal value

function as an ISpS-Lyapunov function for the system (2), thus the
exact DTM (2) is ISpS, namely inequality (20) holds.
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[20] D. Nešić, A.R. Teel, P.V. Kokotović, Sufficient conditions for stabilization of
sampled-data nonlinear systems via discrete-time approximations, Syst.
Control Lett. 38 (4–5) (1999) 259–270.

[21] L. Magni, D.M. Raimondo, R. Scattolini, Regional input-to-state stability for
nonlinear model predictive control, IEEE Trans. Autom. Control 51 (9) (2006)
1548–1553.

[22] L. Grüne, D. Nesic, Optimization-based stabilization of sampled-data nonlinear
systems via their approximate discrete-time models, SIAM J. Control Optim. 42
(1) (2003) 98–122.

[23] D. Nesic, D.S. Laila, A note on input-to-state stabilization for nonlinear
sampled-data systems, IEEE Trans. Autom. Control 47 (7) (2002) 1153–1158.

[24] D.L. Marruedo, T. Alamo, E. Camacho, Input-to-state stable mpc for constrained
discrete-time nonlinear systems with bounded additive uncertainties, in:
Proceedings of the 41st IEEE Conference on Decision and Control, 2002, vol. 4,
2002, pp. 4619–4624.
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